
BIG Data, BIG responsibility
Introducing Maneage: customizable framework for managing data lineage

Mohammad Akhlaghi
Instituto de Astrof́ısica de Canarias (IAC), Tenerife, Spain

PLACE HOLDER
MONTH DAY, YEAR

Most recent slides available in link below (this PDF is built from Git commit 7c49cdd):

https://maneage.org/pdf/slides-intro.pdf

https://akhlaghi.org
https://gitlab.com/maneage/slides-introduction
https://maneage.org/pdf/slides-intro.pdf

Let’s start with this nice image of the Wirlpool galaxy (M51): https://i.redd.it/jfqgpqg0hfk11.jpg

https://i.redd.it/jfqgpqg0hfk11.jpg

Now, let’s assume you want to study M51’s outer structure, but you’ll have to detect it first.

Example: Using a single exposure SDSS image with
NoiseChisel (a program that is part of ‘GNU
Astronomy Utilities’).

I When optimized, outskirts detected down to
S/N =1/4, or 28.3 mag/arcsec2. By default, it
only reaches S/N > 1/2.

I Akhlaghi 2019 (arXiv:1909.11230) describes

optimized result:

I Run-time options/configuration.
I Steps before/after NoiseChisel.

I Deep/orange image from Watkins+2015
(arXiv:1501.04599) shown for reference.

I Therefore:

I Default settings not enough.
I Final number not just from NoiseChisel

(more software involved).

Simply reporting in your paper that “we used
NoiseChisel” is not enough to reproduce, understand,
or verify your result.

Input image Default NoiseChisel

Optimized NoiseChisel Much deeper image

https://arxiv.org/abs/1909.11230
https://arxiv.org/abs/1501.04599

Reproducibility crisis in the sciences/astronomy

Snakes on a Spaceship – An Overview of Python in Heliophysics

“...inadequate analysis descriptions and loss of scientific data have made scientific studies difficult or
impossible to replicate”. From Burrell+2018, (arXiv:1901.00143).

Perspectives on Reproducibility and Sustainability of Open-Source Scientific Software

“It is our interest that NASA adopt an open-code policy because without it, reproducibility in
computational science is needlessly hampered”. From Oishi+2018, (arXiv:1801.08200).

Schroedinger’s code: source code availability and link persistence in astrophysics

“We were unable to find source code online ... for 40.4% of the codes used in the research we
looked at”. From Allen+2018, (arXiv:1801.02094).

https://arxiv.org/abs/1901.00143
https://arxiv.org/abs/1801.08200
https://arxiv.org/abs/1801.02094

Reproducibility crisis in the sciences/astronomy

Snakes on a Spaceship – An Overview of Python in Heliophysics

“...inadequate analysis descriptions and loss of scientific data have made scientific studies difficult or
impossible to replicate”. From Burrell+2018, (arXiv:1901.00143).

Perspectives on Reproducibility and Sustainability of Open-Source Scientific Software

“It is our interest that NASA adopt an open-code policy because without it, reproducibility in
computational science is needlessly hampered”. From Oishi+2018, (arXiv:1801.08200).

Schroedinger’s code: source code availability and link persistence in astrophysics

“We were unable to find source code online ... for 40.4% of the codes used in the research we
looked at”. From Allen+2018, (arXiv:1801.02094).

https://arxiv.org/abs/1901.00143
https://arxiv.org/abs/1801.08200
https://arxiv.org/abs/1801.02094

Reproducibility crisis in the sciences/astronomy

Snakes on a Spaceship – An Overview of Python in Heliophysics

“...inadequate analysis descriptions and loss of scientific data have made scientific studies difficult or
impossible to replicate”. From Burrell+2018, (arXiv:1901.00143).

Perspectives on Reproducibility and Sustainability of Open-Source Scientific Software

“It is our interest that NASA adopt an open-code policy because without it, reproducibility in
computational science is needlessly hampered”. From Oishi+2018, (arXiv:1801.08200).

Schroedinger’s code: source code availability and link persistence in astrophysics

“We were unable to find source code online ... for 40.4% of the codes used in the research we
looked at”. From Allen+2018, (arXiv:1801.02094).

https://arxiv.org/abs/1901.00143
https://arxiv.org/abs/1801.08200
https://arxiv.org/abs/1801.02094

Original image from https://www.redbubble.com

https://www.redbubble.com/people/seriesclothing/works/28520432-the-flash-ciscos-shirt-wanted-dead-and-alive-scr-dingers-cat

“Reproducibility crisis” in the sciences? (Baker 2016, Nature 533, 452)

Definitions & Clarification (from the National Academies report in 2019, DOI:10.17226/25303)

Replicability (hardware/statistical)

I Involves data collection.

I Inherently includes measurements errors
(can never be exactly reproduced).

I Example: Raw telescope image/spectra.

I NOT DISCUSSED HERE.

http://slittlefair.staff.shef.ac.uk

http://doi.org/10.17226/25303
http://slittlefair.staff.shef.ac.uk/teaching/phy217/lectures/telescopes/L07/index.html

Definitions & Clarification (from the National Academies report in 2019, DOI:10.17226/25303)

Replicability (hardware/statistical)

I Involves data collection.

I Inherently includes measurements errors
(can never be exactly reproduced).

I Example: Raw telescope image/spectra.

I NOT DISCUSSED HERE.

http://slittlefair.staff.shef.ac.uk

http://doi.org/10.17226/25303
http://slittlefair.staff.shef.ac.uk/teaching/phy217/lectures/telescopes/L07/index.html

Definitions & Clarification (from the National Academies report in 2019, DOI:10.17226/25303)

Replicability (hardware/statistical)

I Involves data collection.

I Inherently includes measurements errors
(can never be exactly reproduced).

I Example: Raw telescope image/spectra.

I NOT DISCUSSED HERE.

http://slittlefair.staff.shef.ac.uk

Reproducibility (Software/Deterministic)

I Involves data analysis, or simulations.

I Starts after data is collected/digitized.

I Example: 2 + 2 = 4 (i.e., sum of datasets).

I DISCUSSED HERE.

https://tsongas.com

http://doi.org/10.17226/25303
http://slittlefair.staff.shef.ac.uk/teaching/phy217/lectures/telescopes/L07/index.html
https://tsongas.com/newsletter_articles/the-new-electronic-version-of-the-advantage/digital-tunnel-wallpaper/

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

Different package managers have different versions of software (repology.org, 2019/11/20)

Astropy
Packaging statusPackaging status

Debian StableDebian Stable 3.1.23.1.2

Debian TestingDebian Testing 3.2.33.2.3

Debian UnstableDebian Unstable 3.2.33.2.3

DeepinDeepin 3.0.23.0.2

Devuan 3.0 (Beowulf)Devuan 3.0 (Beowulf) 3.1.23.1.2

Devuan UnstableDevuan Unstable 3.2.33.2.3

Kali Linux RollingKali Linux Rolling 3.2.33.2.3

ParrotParrot 3.2.33.2.3

PureOS AmberPureOS Amber 3.1.23.1.2

PureOS landingPureOS landing 3.2.33.2.3

Raspbian StableRaspbian Stable 3.1.23.1.2

Raspbian TestingRaspbian Testing 3.2.33.2.3

Ubuntu 18.04Ubuntu 18.04 3.03.0

Ubuntu 18.10Ubuntu 18.10 3.0.43.0.4

Ubuntu 19.04Ubuntu 19.04 3.1.13.1.1

Ubuntu 19.10Ubuntu 19.10 3.2.13.2.1

Ubuntu 20.04Ubuntu 20.04 3.2.23.2.2

Ubuntu 20.04 ProposedUbuntu 20.04 Proposed 3.2.33.2.3

GNU Astronomy Utilities (Gnuastro)
Packaging statusPackaging status

Debian OldstableDebian Oldstable 0.2.330.2.33

Debian StableDebian Stable 0.80.8

Debian TestingDebian Testing 0.100.10

Debian UnstableDebian Unstable 0.100.10

Debian ExperimentalDebian Experimental 0.10.390.10.39

DeepinDeepin 0.50.5

Devuan 2.0 (ASCII)Devuan 2.0 (ASCII) 0.2.330.2.33

Devuan 3.0 (Beowulf)Devuan 3.0 (Beowulf) 0.80.8

Devuan UnstableDevuan Unstable 0.100.10

DPortsDPorts 0.90.9

FreeBSD PortsFreeBSD Ports 0.100.10

Funtoo 1.3Funtoo 1.3 0.30.3

Funtoo 1.4Funtoo 1.4 0.30.3

GentooGentoo 0.30.3

GNU GuixGNU Guix 0.100.10

Kali Linux RollingKali Linux Rolling 0.100.10

openSUSE Leap 15.1openSUSE Leap 15.1 0.80.8

openSUSE Leap 15.2openSUSE Leap 15.2 0.80.8

openSUSE TumbleweedopenSUSE Tumbleweed 0.80.8

openSUSE Science TumbleweedopenSUSE Science Tumbleweed 0.100.10

PardusPardus 0.2.330.2.33

ParrotParrot 0.100.10

PLD LinuxPLD Linux 0.80.8

PureOS AmberPureOS Amber 0.80.8

PureOS landingPureOS landing 0.100.10

Raspbian OldstableRaspbian Oldstable 0.2.330.2.33

Raspbian StableRaspbian Stable 0.80.8

Raspbian TestingRaspbian Testing 0.100.10

Ubuntu 18.04Ubuntu 18.04 0.50.5

Ubuntu 18.10Ubuntu 18.10 0.70.7

Ubuntu 19.04Ubuntu 19.04 0.80.8

Ubuntu 19.10Ubuntu 19.10 0.100.10

Ubuntu 20.04Ubuntu 20.04 0.100.10

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

Example: Matplotlib (a Python visualization library) build dependencies

From “Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria” (Alliez et al. 2019, hal-02135891)

https://hal.archives-ouvertes.fr/hal-02135891

Impact of “Dependency hell” on native building in various hardware (CPU architectures)

Astropy depends on Matplotlib GNU Astronomy Utilities doesn’t.

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

Di Cosmo & Pellegrini (2019) Encouraging a wider usage of software derived from research

“Software is a hybrid object in the world research as it is equally a driving force (as a tool), a
result (as proof of the existence of a solution) and an object of study (as an artefact)”.

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com

General outline of a project (after data collection)

Existing solutions:

Virtual machines

Containers (e.g., Docker)

OSs (e.g., Nix, GNU Guix)

Software Build

Hardware/data

Run software on data Paper

https://heywhatwhatdidyousay.wordpress.com
http://pngimages.net

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

https://heywhatwhatdidyousay.wordpress.com
http://pngimages.net

Science is a tricky business

Image from nature.com (“Five ways to fix statistics”, Nov 2017)

Data analysis [...] is a human behavior. Researchers who hunt hard enough will turn up a result that fits
statistical criteria, but their discovery will probably be a false positive.

Five ways to fix statistics, Nature, 551, Nov 2017.

https://www.nature.com/articles/d41586-017-07522-z

Buckheit & Donoho (1996) Lecture Notes in Statistics (vol 103, DOI:10.1007/978-1-4612-2544-7 5)

“An article about computational science [today: almost all sciences] ... is not the scholarship
itself, it is merely ADVERTISING of the SCHOLARSHIP.

The ACTUAL SCHOLARSHIP is the complete software development environment and the
complete set of instructions which generated the figures.”

https://doi.org/10.1007/978-1-4612-2544-7_5

Buckheit & Donoho (1996) Lecture Notes in Statistics (vol 103, DOI:10.1007/978-1-4612-2544-7 5)

“An article about computational science [today: almost all sciences] ... is not the scholarship
itself, it is merely ADVERTISING of the SCHOLARSHIP.

The ACTUAL SCHOLARSHIP is the complete software development environment and the
complete set of instructions which generated the figures.”

https://doi.org/10.1007/978-1-4612-2544-7_5

Principles behind proposed solution

Basic/simple principle:

Science is defined by its METHOD, not its result.

I Complete/self-contained:
I Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
I Must not require root permissions (discards tools like Docker or Nix/Guix).
I Should be non-interactive or runnable in batch (user interaction is an incompleteness).
I Should be usable without internet connection.

I Modularity: Parts of the project should be re-usable in other projects.
I Plain text: Project’s source should be in plain-text (binary formats need special software)

I This includes high-level analysis.
I It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
I Version control (e.g., with Git) can track project’s history.

I Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
I Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
I Easier learning curve, also doesn’t create a generational gap.
I Is compatible and extensible.

I Verifable inputs and outputs: Inputs and Outputs must be automatically verified.

I Free and open source software: Free software is essential: non-free software is not configurable,
not distributable, and dependent on non-free provider (which may discontinue it in N years).

Principles behind proposed solution

Basic/simple principle:

Science is defined by its METHOD, not its result.

I Complete/self-contained:
I Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).

I Must not require root permissions (discards tools like Docker or Nix/Guix).
I Should be non-interactive or runnable in batch (user interaction is an incompleteness).
I Should be usable without internet connection.

I Modularity: Parts of the project should be re-usable in other projects.
I Plain text: Project’s source should be in plain-text (binary formats need special software)

I This includes high-level analysis.
I It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
I Version control (e.g., with Git) can track project’s history.

I Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
I Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
I Easier learning curve, also doesn’t create a generational gap.
I Is compatible and extensible.

I Verifable inputs and outputs: Inputs and Outputs must be automatically verified.

I Free and open source software: Free software is essential: non-free software is not configurable,
not distributable, and dependent on non-free provider (which may discontinue it in N years).

Principles behind proposed solution

Basic/simple principle:

Science is defined by its METHOD, not its result.

I Complete/self-contained:
I Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
I Must not require root permissions (discards tools like Docker or Nix/Guix).

I Should be non-interactive or runnable in batch (user interaction is an incompleteness).
I Should be usable without internet connection.

I Modularity: Parts of the project should be re-usable in other projects.
I Plain text: Project’s source should be in plain-text (binary formats need special software)

I This includes high-level analysis.
I It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
I Version control (e.g., with Git) can track project’s history.

I Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
I Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
I Easier learning curve, also doesn’t create a generational gap.
I Is compatible and extensible.

I Verifable inputs and outputs: Inputs and Outputs must be automatically verified.

I Free and open source software: Free software is essential: non-free software is not configurable,
not distributable, and dependent on non-free provider (which may discontinue it in N years).

Principles behind proposed solution

Basic/simple principle:

Science is defined by its METHOD, not its result.

I Complete/self-contained:
I Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
I Must not require root permissions (discards tools like Docker or Nix/Guix).
I Should be non-interactive or runnable in batch (user interaction is an incompleteness).

I Should be usable without internet connection.

I Modularity: Parts of the project should be re-usable in other projects.
I Plain text: Project’s source should be in plain-text (binary formats need special software)

I This includes high-level analysis.
I It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
I Version control (e.g., with Git) can track project’s history.

I Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
I Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
I Easier learning curve, also doesn’t create a generational gap.
I Is compatible and extensible.

I Verifable inputs and outputs: Inputs and Outputs must be automatically verified.

I Free and open source software: Free software is essential: non-free software is not configurable,
not distributable, and dependent on non-free provider (which may discontinue it in N years).

Principles behind proposed solution

Basic/simple principle:

Science is defined by its METHOD, not its result.

I Complete/self-contained:
I Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
I Must not require root permissions (discards tools like Docker or Nix/Guix).
I Should be non-interactive or runnable in batch (user interaction is an incompleteness).
I Should be usable without internet connection.

I Modularity: Parts of the project should be re-usable in other projects.
I Plain text: Project’s source should be in plain-text (binary formats need special software)

I This includes high-level analysis.
I It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
I Version control (e.g., with Git) can track project’s history.

I Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
I Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
I Easier learning curve, also doesn’t create a generational gap.
I Is compatible and extensible.

I Verifable inputs and outputs: Inputs and Outputs must be automatically verified.

I Free and open source software: Free software is essential: non-free software is not configurable,
not distributable, and dependent on non-free provider (which may discontinue it in N years).

Principles behind proposed solution

Basic/simple principle:

Science is defined by its METHOD, not its result.

I Complete/self-contained:
I Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
I Must not require root permissions (discards tools like Docker or Nix/Guix).
I Should be non-interactive or runnable in batch (user interaction is an incompleteness).
I Should be usable without internet connection.

I Modularity: Parts of the project should be re-usable in other projects.

I Plain text: Project’s source should be in plain-text (binary formats need special software)
I This includes high-level analysis.
I It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
I Version control (e.g., with Git) can track project’s history.

I Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
I Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
I Easier learning curve, also doesn’t create a generational gap.
I Is compatible and extensible.

I Verifable inputs and outputs: Inputs and Outputs must be automatically verified.

I Free and open source software: Free software is essential: non-free software is not configurable,
not distributable, and dependent on non-free provider (which may discontinue it in N years).

Principles behind proposed solution

Basic/simple principle:

Science is defined by its METHOD, not its result.

I Complete/self-contained:
I Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
I Must not require root permissions (discards tools like Docker or Nix/Guix).
I Should be non-interactive or runnable in batch (user interaction is an incompleteness).
I Should be usable without internet connection.

I Modularity: Parts of the project should be re-usable in other projects.
I Plain text: Project’s source should be in plain-text (binary formats need special software)

I This includes high-level analysis.
I It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
I Version control (e.g., with Git) can track project’s history.

I Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
I Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
I Easier learning curve, also doesn’t create a generational gap.
I Is compatible and extensible.

I Verifable inputs and outputs: Inputs and Outputs must be automatically verified.

I Free and open source software: Free software is essential: non-free software is not configurable,
not distributable, and dependent on non-free provider (which may discontinue it in N years).

Principles behind proposed solution

Basic/simple principle:

Science is defined by its METHOD, not its result.

I Complete/self-contained:
I Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
I Must not require root permissions (discards tools like Docker or Nix/Guix).
I Should be non-interactive or runnable in batch (user interaction is an incompleteness).
I Should be usable without internet connection.

I Modularity: Parts of the project should be re-usable in other projects.
I Plain text: Project’s source should be in plain-text (binary formats need special software)

I This includes high-level analysis.
I It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
I Version control (e.g., with Git) can track project’s history.

I Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
I Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
I Easier learning curve, also doesn’t create a generational gap.
I Is compatible and extensible.

I Verifable inputs and outputs: Inputs and Outputs must be automatically verified.

I Free and open source software: Free software is essential: non-free software is not configurable,
not distributable, and dependent on non-free provider (which may discontinue it in N years).

Principles behind proposed solution

Basic/simple principle:

Science is defined by its METHOD, not its result.

I Complete/self-contained:
I Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
I Must not require root permissions (discards tools like Docker or Nix/Guix).
I Should be non-interactive or runnable in batch (user interaction is an incompleteness).
I Should be usable without internet connection.

I Modularity: Parts of the project should be re-usable in other projects.
I Plain text: Project’s source should be in plain-text (binary formats need special software)

I This includes high-level analysis.
I It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
I Version control (e.g., with Git) can track project’s history.

I Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
I Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
I Easier learning curve, also doesn’t create a generational gap.
I Is compatible and extensible.

I Verifable inputs and outputs: Inputs and Outputs must be automatically verified.

I Free and open source software: Free software is essential: non-free software is not configurable,
not distributable, and dependent on non-free provider (which may discontinue it in N years).

Principles behind proposed solution

Basic/simple principle:

Science is defined by its METHOD, not its result.

I Complete/self-contained:
I Only dependency should be POSIX tools (discards Conda or Jupyter which need Python).
I Must not require root permissions (discards tools like Docker or Nix/Guix).
I Should be non-interactive or runnable in batch (user interaction is an incompleteness).
I Should be usable without internet connection.

I Modularity: Parts of the project should be re-usable in other projects.
I Plain text: Project’s source should be in plain-text (binary formats need special software)

I This includes high-level analysis.
I It is easily publishable (very low volume of ×100KB), archivable, and parse-able.
I Version control (e.g., with Git) can track project’s history.

I Minimal complexity: Occum’s rasor: “Never posit pluralities without necessity”.
I Avoiding the fashionable tool of the day: tomorrow another tool will take its place!
I Easier learning curve, also doesn’t create a generational gap.
I Is compatible and extensible.

I Verifable inputs and outputs: Inputs and Outputs must be automatically verified.

I Free and open source software: Free software is essential: non-free software is not configurable,
not distributable, and dependent on non-free provider (which may discontinue it in N years).

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Predefined/exact software tools

Reproducibility & software

Reproducing the environment (specific software versions, build instructions and dependen-
cies) is also critically important for reproducibility.

I Containers or Virtual Machines are a binary black box.

I Maneage installs fixed versions of all necessary research software and their
dependencies.

I Installs similar environment on GNU/Linux, or macOS systems.

I Works very much like a package manager (e.g., apt or brew).

Predefined/exact software tools

Reproducibility & software

Reproducing the environment (specific software versions, build instructions and dependen-
cies) is also critically important for reproducibility.

I Containers or Virtual Machines are a binary black box.

I Maneage installs fixed versions of all necessary research software and their
dependencies.

I Installs similar environment on GNU/Linux, or macOS systems.

I Works very much like a package manager (e.g., apt or brew).

Controlled environment and build instructions

Controlled environment and build instructions

Example: Matplotlib (a Python visualization library) build dependencies

From “Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria” (Alliez et al. 2019, hal-02135891)

https://hal.archives-ouvertes.fr/hal-02135891

All high-level dependencies are under control (e.g., NoiseChisel’s dependencies)

GNU/Linux distribution

$ ldd .local/bin/astnoisechisel

libgnuastro.so.7 => /PROJECT/libgnuastro.so.7 (0x00007f6745f39000)

libgit2.so.26 => /PROJECT/libgit2.so.26 (0x00007f6745df1000)

libtiff.so.5 => /PROJECT/libtiff.so.5 (0x00007f6745d77000)

liblzma.so.5 => /PROJECT/liblzma.so.5 (0x00007f6745d4f000)

libjpeg.so.9 => /PROJECT/libjpeg.so.9 (0x00007f6745d12000)

libwcs.so.6 => /PROJECT/libwcs.so.6 (0x00007f6745ba8000)

libcfitsio.so.8 => /PROJECT/libcfitsio.so.8 (0x00007f674588b000)

libcurl.so.4 => /PROJECT/libcurl.so.4 (0x00007f6745811000)

libssl.so.1.1 => /PROJECT/libssl.so.1.1 (0x00007f6745777000)

libcrypto.so.1.1 => /PROJECT/libcrypto.so.1.1 (0x00007f6745491000)

libz.so.1 => /PROJECT/libz.so.1 (0x00007f6745474000)

libgsl.so.23 => /PROJECT/libgsl.so.23 (0x00007f67451e3000)

libgslcblas.so.0 => /PROJECT/libgslcblas.so.0 (0x00007f67451a1000)

linux-vdso.so.1 (0x00007fffdcbf7000)

libpthread.so.0 => /usr/lib/libpthread.so.0 (0x00007f6745006000)

libm.so.6 => /usr/lib/libm.so.6 (0x00007f6745027000)

libc.so.6 => /usr/lib/libc.so.6 (0x00007f6744e43000)

libdl.so.2 => /usr/lib/libdl.so.2 (0x00007f6744e1e000)

/lib64/ld-linux-x86-64.so.2 => /usr/lib64/ld-linux-x86-64.so.2

macOS

$ otool -L .local/bin/astnoisechisel

/PROJECT/libgnuastro.7.dylib (comp ver 8.0.0, cur ver 8.0.0)

/PROJECT/libgit2.26.dylib (comp ver 26.0.0, cur ver 0.26.0)

/PROJECT/libtiff.5.dylib (comp ver 10.0.0, cur ver 10.0.0)

/PROJECT/liblzma.5.dylib (comp ver 8.0.0, cur ver 8.4.0)

/PROJECT/libjpeg.9.dylib (comp ver 12.0.0, cur ver 12.0.0)

/PROJECT/libwcs.6.2.dylib (comp ver 6.0.0, cur ver 6.2.0)

/PROJECT/libcfitsio.8.dylib (comp ver 8.0.0, cur ver 8.3.47)

/PROJECT/libcurl.4.dylib (comp ver 10.0.0, cur ver 10.0.0)

/PROJECT/libssl.1.1.dylib (comp ver 1.1.0, cur ver 1.1.0)

/PROJECT/libcrypto.1.1.dylib (comp ver 1.1.0, cur ver 1.1.0)

/PROJECT/libz.1.dylib (comp ver 1.0.0, cur ver 1.2.11)

/PROJECT/libgsl.23.dylib (comp ver 25.0.0, cur ver 25.0.0)

/PROJECT/libgslcblas.0.dylib (comp ver 1.0.0, cur ver 1.0.0)

/usr/lib/libSystem.B.dylib (comp ver 1.0.0, cur ver 1252.50.4)

Project libraries: High-level libraries built from source for each project (note the same version in both OSs).
GNU C Library: Project specific build is in progress (http://savannah.nongnu.org/task/?15390).
Closed operating system files: We have no control on low-level non-free operating systems components.

http://savannah.nongnu.org/task/?15390

Advantages of this build system

I Project runs in fixed/controlled environment: custom build of Bash, Make,
GNU Coreutils (ls, cp, mkdir and etc), AWK, or SED, LATEX, etc.

I No need for root/administrator permissions (on servers or super computers).

I Whole system is built automatically on any Unix-like operating system
(less 2 hours).

I Dependencies of different projects will not conflict.

I Everything in plain text (human & computer readable/archivable).

https://natemowry2.wordpress.com

https://natemowry2.wordpress.com

Software citation automatically generated in paper (including Astropy)

Software citation automatically generated in paper (including Astropy)

Software citation automatically generated in paper (only GNU Astronomy Utilities)

Software citation automatically generated in paper (only GNU Astronomy Utilities)

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Input data source and integrity is documented and checked

Stored information about each input file:

I PID (where available).

I Download URL.

I MD5-sum to check integrity.

All inputs are downloaded from the given PID/URL when necessary
(during the analysis).

MD5-sums are checked to make sure the download was done properly or the file
is the same (hasn’t changed on the server/source).

Example from the reproducible paper arXiv:1909.11230.
This paper needs three input files (two images, one catalog).

https://arxiv.org/abs/1909.11230

Input data source and integrity is documented and checked

Stored information about each input file:

I PID (where available).

I Download URL.

I MD5-sum to check integrity.

All inputs are downloaded from the given PID/URL when necessary
(during the analysis).

MD5-sums are checked to make sure the download was done properly or the file
is the same (hasn’t changed on the server/source).

Example from the reproducible paper arXiv:1909.11230.
This paper needs three input files (two images, one catalog).

https://arxiv.org/abs/1909.11230

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Reproducible science: Maneage is managed through a Makefile

All steps (downloading and analysis) are managed by Makefiles
(example from zenodo.1164774):

I Unlike a script which always starts from the top, a Makefile starts from the
end and steps that don’t change will be left untouched (not remade).

I A single rule can manage any number of files.

I Make can identify independent steps internally and do them in parallel.

I Make was designed for complex projects with thousands of files (all major
Unix-like components), so it is highly evolved and efficient.

I Make is a very simple and small language, thus easy to learn with great
and free documentation (for example GNU Make’s manual).

https://doi.org/10.5281/zenodo.1164774
https://www.gnu.org/software/make/manual/

Reproducible science: Maneage is managed through a Makefile

All steps (downloading and analysis) are managed by Makefiles
(example from zenodo.1164774):

I Unlike a script which always starts from the top, a Makefile starts from the
end and steps that don’t change will be left untouched (not remade).

I A single rule can manage any number of files.

I Make can identify independent steps internally and do them in parallel.

I Make was designed for complex projects with thousands of files (all major
Unix-like components), so it is highly evolved and efficient.

I Make is a very simple and small language, thus easy to learn with great
and free documentation (for example GNU Make’s manual).

https://doi.org/10.5281/zenodo.1164774
https://www.gnu.org/software/make/manual/

Reproducible science: Maneage is managed through a Makefile

All steps (downloading and analysis) are managed by Makefiles
(example from zenodo.1164774):

I Unlike a script which always starts from the top, a Makefile starts from the
end and steps that don’t change will be left untouched (not remade).

I A single rule can manage any number of files.

I Make can identify independent steps internally and do them in parallel.

I Make was designed for complex projects with thousands of files (all major
Unix-like components), so it is highly evolved and efficient.

I Make is a very simple and small language, thus easy to learn with great
and free documentation (for example GNU Make’s manual).

https://doi.org/10.5281/zenodo.1164774
https://www.gnu.org/software/make/manual/

General outline of a project (after data collection)

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

Values in final report/paper

All analysis results (numbers, plots, tables) written in paper’s PDF as LATEX macros. They are thus
updated automatically on any change.
Shown here is a portion of the NoiseChisel paper and its LATEX source (arXiv:1505.01664).

https://arxiv.org/abs/1505.01664

Values in final report/paper

All analysis results (numbers, plots, tables) written in paper’s PDF as LATEX macros. They are thus
updated automatically on any change.
Shown here is a portion of the NoiseChisel paper and its LATEX source (arXiv:1505.01664).

https://arxiv.org/abs/1505.01664

Analysis step results/values concatenated into a single file.

All LATEX macros come from a single file.

Analysis step results/values concatenated into a single file.

All LATEX macros come from a single file.

Analysis results stored as LATEX macros

The analysis scripts write/update the LATEX macro values automatically.

Analysis results stored as LATEX macros

The analysis scripts write/update the LATEX macro values automatically.

Let’s see how the analysis is managed in a hypothetical project...

Makefiles (.mk) keep contextually separate parts of the project, all imported into top-make.mk

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The ultimate purpose of the project is to produce a paper/report (in PDF).

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The narrative description, typography and references are in paper.tex & references.tex.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.texGreen boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

Analysis outputs (blended into the PDF as LATEX macros) come from project.tex.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

But analysis outputs must first be verified (with checksums) before entering the report/paper.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

Basic project info comes from initialize.tex.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

Reported values about the downloaded inputs come from download.tex.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

... for example the number of rows in the second input (a catalog) of the project.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The URL to download input2.dat, and a checksum to validate it, are stored in INPUTS.conf.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

INPUTS.conf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

Reported values from first analysis steps stored in analysis1.tex.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

INPUTS.conf

analysis1.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

... for example the average of the numbers in out-1b.dat.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

INPUTS.conf

analysis1.tex

out-1b.dat

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

But out-1b.dat itself depends on other files and a paramter (for example a multiple of sigma).

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

INPUTS.conf

analysis1.tex

out-1b.dat

out-1a.dat

param-1.conf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

out-1a.dat is built from a downloaded dataset.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

INPUTS.conf

analysis1.tex

out-1b.dat

out-1a.dat

param-1.conf

input1.dat

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

Download URL and checksum of input1.dat also stored in INPUTS.conf.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

INPUTS.conf

analysis1.tex

out-1b.dat

out-1a.dat

param-1.conf

input1.dat

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

Reported values from second analysis steps stored in analysis2.tex.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

INPUTS.conf

analysis1.tex

out-1b.dat

out-1a.dat

param-1.conf

input1.dat

analysis2.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

... for example the number of selected rows in out-2b.dat.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

INPUTS.conf

analysis1.tex

out-1b.dat

out-1a.dat

param-1.conf

input1.dat

analysis2.tex

out-2b.dat

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

out-2b.dat is derived from out-1b.dat (for example, rejected some of out-1b.dat’s rows).

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

INPUTS.conf

analysis1.tex

out-1b.dat

out-1a.dat

param-1.conf

input1.dat

analysis2.tex

out-2b.dat

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

Reported values from third analysis steps stored in analysis3.tex.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

INPUTS.conf

analysis1.tex

out-1b.dat

out-1a.dat

param-1.conf

input1.dat

analysis2.tex

out-2b.dat

analysis3.tex

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

... for example measurements from both out-3a.dat and out-3b.dat.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

INPUTS.conf

analysis1.tex

out-1b.dat

out-1a.dat

param-1.conf

input1.dat

analysis2.tex

out-2b.dat

analysis3.tex

out-3a.dat

out-3b.dat

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

out-3b.dat is generated from an analysis on out-2a.dat.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

INPUTS.conf

analysis1.tex

out-1b.dat

out-1a.dat

param-1.conf

input1.dat

analysis2.tex

out-2b.dat

analysis3.tex

out-3a.dat

out-3b.dat

out-2a.dat

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

But out-2a.dat itself is generated from input1.dat and an analysis which has two settings.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

INPUTS.conf

analysis1.tex

out-1b.dat

out-1a.dat

param-1.conf

input1.dat

analysis2.tex

out-2b.dat

analysis3.tex

out-3a.dat

out-3b.dat

out-2a.dat

param-2a.conf

param-2b.conf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

out-3a.dat also depends on out-1a.dat and an analysis with needs one parameter.

top-make.mk

initialize.mk download.mk analysis1.mk analysis2.mk analysis3.mk

verify.mk paper.mk

paper.pdf

references.tex paper.tex

project.texverify.tex

initialize.tex

Basic project info
(e.g., Git commit).

Also defines
project structure
(for *.mk files).

download.tex

input2.dat

INPUTS.conf

analysis1.tex

out-1b.dat

out-1a.dat

param-1.conf

input1.dat

analysis2.tex

out-2b.dat

analysis3.tex

out-3a.dat

out-3b.dat

out-2a.dat

param-2a.conf

param-2b.conf param-3.conf

Green boxes with sharp corners: source files (hand written).
Blue boxes with rounded corners: built files (automatically generated),

built files are shown in the Makefile that contains their build instructions.

The whole project is a directed graph (codifying the data’s lineage).

I Every file (source or built) is a node in the graph (connected to others).
(The links/connections/dependencies between the nodes, defined by the Makefiles: *.mk)

I There are two types of nodes/files:
I Source nodes (*.conf and paper.tex) only have an outward link.

I Built files always have inward and (except paper.pdf) outward link(s).

I All built files ultimately originate from a *.conf file,
... and ultimately conclude in paper.pdf.

Benefits of using Make

I Make can parallelize the analysis:
Make knows which steps are indepenent and will run them at the same time.

I Make can automatically detect a change and will re-do only the affected steps.
(for example to change the multiple of sigma in a configuration file to see its effect)

I Easily backtrace any step (without needing to remember!).
(very useful to find problems/improvements)

I The above will speed up your work, and encourage experimentation on methods.

I Make is available on any system: many people are already familiar with it.

I And again: its all in plain text!
(doesn’t take much space, easy to read, distribute, parse automatically, or archive)

I Recall that the project’s software installation was also managed in Make.

Files organized in directories by context (here are some of the files discussed before)
project/

paper.tex

reproduce/

software/

config/

versions.conf

make/

high-level.mk

shell/ bibtex/

analysis/

config/

INPUTS.conf

param-1.conf

param-2a.conf

param-2b.conf

make/
top-prepare.mk

top-make.mk

initialize.mk

analysis1.mk

bash/ python/

tex/

src/
references.tex

Files organized in directories by context (now with other project files and symbolic links)
project/

COPYING paper.tex project README.md README-hacking.md

reproduce/

software/

config/

LOCAL.conf.in

versions.conf

checksums.conf

make/
basic.mk

high-level.mk

python.mk

shell/
configure.sh

bashrc.sh

bibtex/
fftw.tex

numpy.tex

gnuastro.tex

analysis/

config/

INPUTS.conf

param-1.conf

param-2a.conf

param-2b.conf

make/
top-prepare.mk

top-make.mk

initialize.mk

analysis1.mk

bash/
process-A.sh

python/

operation-B.py

fitting-plot.py

tex/

src/
references.tex

figure-1.tex

build/

Symbolic link to
LATEX build directory.

tikz/

Symbolic link to TikZ
directory (figures built
by LATEX).

.local/
Symbolic link to project’s software environment, e.g.,
Python or R, run ‘.local/bin/python’ or ‘.local/bin/R’

.build/
Symbolic link to project’s top-level build directory.
Enabling easy access to all of project’s built components.

.git/
Full project temporal provenance (version controlled history) in Git.

All questions have an answer now (in plain text: human & computer readable/archivable).

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

All questions have an answer now (in plain text: so we can use Git to keep its history).

Software Build

Hardware/data

Run software on data Paper

What version?

Repository?

Dependencies?

Dep. versions?

Config options?

Config environment?

Data base, or PID?

Calibration/version?

Integrity?

What order?

Runtime options?

Human error?

Confirmation bias?

Environment update?

In sync with coauthors?

Sync with analysis?

Report this info?

Cited software?

History recorded?

Green boxes with sharp corners: source/input components/files.
Blue boxes with rounded corners: built components.
Red boxes with dashed borders: questions that must be clarified for each phase.

New projects branch from Maneage

Maneage

ad2c476

706c644

I Template’s history is recorded in Git.

New projects branch from Maneage

Maneage

ad2c476

706c644 Project

53b53d6

I Template’s history is recorded in Git.

I New project: a branch from the template.
Recall that every commit contains the following:
I Instructions to download, verify and build software.
I Instructions to download and verify input data.
I Instructions to run software on data (do the analysis).
I Narrative description of project’s purpose/context.

New projects branch from Maneage

Maneage

ad2c476

706c644 Project

53b53d6

9f8cc74

8ebb784

I Template’s history is recorded in Git.

I New project: a branch from the template.
Recall that every commit contains the following:
I Instructions to download, verify and build software.
I Instructions to download and verify input data.
I Instructions to run software on data (do the analysis).
I Narrative description of project’s purpose/context.

I Research progresses in the project branch.

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

Project

53b53d6

9f8cc74

8ebb784

I Template’s history is recorded in Git.

I New project: a branch from the template.
Recall that every commit contains the following:
I Instructions to download, verify and build software.
I Instructions to download and verify input data.
I Instructions to run software on data (do the analysis).
I Narrative description of project’s purpose/context.

I Research progresses in the project branch.

I Template will evolve (improved infrastructure).

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

Project

53b53d6

9f8cc74

8ebb784

01ce2cc

I Template’s history is recorded in Git.

I New project: a branch from the template.
Recall that every commit contains the following:
I Instructions to download, verify and build software.
I Instructions to download and verify input data.
I Instructions to run software on data (do the analysis).
I Narrative description of project’s purpose/context.

I Research progresses in the project branch.

I Template will evolve (improved infrastructure).

I Template can be imported/merged back into project.

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

2d808f2

a4d96c0

Project

53b53d6

9f8cc74

8ebb784

01ce2cc

b52cc6f

I Template’s history is recorded in Git.

I New project: a branch from the template.
Recall that every commit contains the following:
I Instructions to download, verify and build software.
I Instructions to download and verify input data.
I Instructions to run software on data (do the analysis).
I Narrative description of project’s purpose/context.

I Research progresses in the project branch.

I Template will evolve (improved infrastructure).

I Template can be imported/merged back into project.

I The template and project will evolve.

I During research this encourages creative tests
(previous research states can easily be retrieved).

I Coauthors can work on same project in parallel
(separate project branches).

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

2d808f2

a4d96c0

Project

53b53d6

9f8cc74

8ebb784

01ce2cc

b52cc6f

b52
cc6

f

I Template’s history is recorded in Git.

I New project: a branch from the template.
Recall that every commit contains the following:
I Instructions to download, verify and build software.
I Instructions to download and verify input data.
I Instructions to run software on data (do the analysis).
I Narrative description of project’s purpose/context.

I Research progresses in the project branch.

I Template will evolve (improved infrastructure).

I Template can be imported/merged back into project.

I The template and project will evolve.

I During research this encourages creative tests
(previous research states can easily be retrieved).

I Coauthors can work on same project in parallel
(separate project branches).

I Upon publication, the Git checksum is enough to
verify the integrity of the result.

New projects branch from Maneage

Maneage

ad2c476

706c644

fa2ac10

1e06fe2

32043ee

2d808f2

a4d96c0

Project

53b53d6

9f8cc74

8ebb784

01ce2cc

b52cc6f

b52
cc6

f

I Template’s history is recorded in Git.

I New project: a branch from the template.
Recall that every commit contains the following:
I Instructions to download, verify and build software.
I Instructions to download and verify input data.
I Instructions to run software on data (do the analysis).
I Narrative description of project’s purpose/context.

I Research progresses in the project branch.

I Template will evolve (improved infrastructure).

I Template can be imported/merged back into project.

I The template and project will evolve.

I During research this encourages creative tests
(previous research states can easily be retrieved).

I Coauthors can work on same project in parallel
(separate project branches).

I Upon publication, the Git checksum is enough to
verify the integrity of the result.

“Verified” image from vectorstock.com

https://www.vectorstock.com/royalty-free-vector/red-vintage-verified-stamp-retro-style-on-white-vector-22770076

Two recent examples (publishing Git checksum in abstract)

Two recent examples (publishing Git checksum in abstract)

Publication of the project

A reproducible project using Maneage will have the following (plain text) components:

I Makefiles.

I LATEX source files.

I Configuration files for software used in analysis.

I Scripts/programming files (e.g., Python, Shell, AWK, C).

The volume of the project’s source will thus be negligible compared to a single figure in a paper
(usually ∼ 100 kilo-bytes).

The project’s pipeline (customized Maneage) can be published in

I arXiv: uploaded with the LATEX source to always stay with the paper
(for example arXiv:1505.01664). The file containing all macros must also be uploaded so arXiv’s
server can easily build the LATEX source.

I Zenodo: Along with all the input datasets (many Gigabytes) and software
(for example zenodo.3408481) and given a unique DOI.

https://arxiv.org/abs/1505.01664
https://doi.org/10.5281/zenodo.3408481

Project source and its execution

Programs [here: Scientific projects] must be written for people to read...
...and only incidentally for machines to execute.

Harold Abelson, Structure and Interpretation of Computer Programs

General outline of using this system (for example arXiv:1909.11230)

$ git clone http://gitlab.com/makhlaghi/iau-symposium-355 # Import the project.

$./project configure # You will specify the build directory on your system,

and it will build all software (about 1.5 hours).

$./project make # Does all the analysis and makes final PDF.

https://arxiv.org/abs/1909.11230

General outline of using this system (for example arXiv:1909.11230)

$ git clone http://gitlab.com/makhlaghi/iau-symposium-355 # Import the project.

$./project configure # You will specify the build directory on your system,

and it will build all software (about 1.5 hours).

$./project make # Does all the analysis and makes final PDF.

https://arxiv.org/abs/1909.11230

General outline of using this system (for example arXiv:1909.11230)

$ git clone http://gitlab.com/makhlaghi/iau-symposium-355 # Import the project.

$./project configure # You will specify the build directory on your system,

and it will build all software (about 1.5 hours).

$./project make # Does all the analysis and makes final PDF.

https://arxiv.org/abs/1909.11230

Future prospects...

Adoption of reproducibility by many researchers will enable the following:

I A repository for education/training (PhD students, or researchers in other fields).

I Easy verification/understanding of other research projects (when necessary).

I Trivially test different steps of others’ work (different configurations, software and etc).

I Science can progress incrementally (shorter papers actually building on each other!).

I Extract meta-data after the publication of a dataset (for future ontologies or vocabularies).

I Applying machine learning on reproducible research projects will allow us to solve some Big
Data Challenges:

I Extract the relevant parameters automatically.

I Translate the science to enormous samples.

I Believe the results when no one will have time to reproduce.

I Have confidence in results derived using machine learning or AI.

RDA adoption grant (2019) to IAC for Maneage

For Maneage, the IAC is selected as a Top European organization funded to adopt RDA
Recommendations and Outputs.

I Research Data Alliance was launched by the European Commission, NSF, National Institute of Standards and Technology, and the Australian
Government’s Department of Innovation.

I RDA Outputs are the technical and social infrastructure solutions developed by RDA Working Groups or Interest Groups that enable data
sharing, exchange, and interoperability.

Workshop on Maneage at IAC: first week of April (March 30th to April 3rd)

We are organizing a workshop to help interested early career researchers adopt Maneage.

Image from shutterstock.com

Please contact akhlaghi@iac.es to join (Space is very limited: it is hands-on).

https://www.shutterstock.com/es/image-vector/managers-workshop-training-manager-skills-brainstorming-1334996078

Existing technologies (Independent environment)

I Virtual machines:
I Contain the full operating system, are thus very large (×Gigabytes).

I In binary format (decoding a built VM’s environment is extremely hard and inaccurate).

I Containers: (For example Docker or Singularity)
I Similar to virtual machines, but without low-level kernel (use host’s kernel).

I Will fail as soon as kernel is no longer supported
(for example Docker currently only supports Linux kernel 3.10 and above from 2013).

I Good solutions for software engineers (that need to reproduce a bug’s environment today).

I Docker is modular, needs root previlages (not available in HPCs), Dockerfiles allow incompleteness
(especially in the common scenario of using the operating system’s package manager, see next slide)

I Singularity is monolithic and thus can be very large.

I In binary format (similar to VMs, especially when OS package managers are used).

In summary, they only store a built environment (they are outputs, not good for archiving).

Existing technologies (Package managers)

I Operating system package managers:
I For example apt or yum for Debian-based and RedHat-based GNU/Linux operating systems

(the most common way to install software).

I Tightly intertwined with the operating system’s components
(arbitrary control of software versions is not easily possible).

I Older software (for example +5 years) is usually removed.

I Conda/Anaconda:
I Conda has build instructions for software and their dependencies.

I But it doesn’t go down to the C library or the lower-level components of operating system.

I It is written in Python (can’t be used later when current Python is depreciated).

I Authors of Uhse+20191 report2 that their Conda environment breaks roughly every 3 months
(Conda environments need to be updated to be used later! Breaking reproducibility).

I Nix, or GNU Guix:
I Deliver perfectly reproducible builds (bit-wise reproducibility of software), needs root access.

I Doesn’t require documentation of dependencies.

I Spack: Similar to Nix/Guix but written in Python.

1http://dx.doi.org/10.1002/cppb.20097
2https://github.com/conda-forge/conda-forge.github.io/issues/787

http://dx.doi.org/10.1002/cppb.20097
https://github.com/conda-forge/conda-forge.github.io/issues/787

Existing technologies (workflow tools)

I Binder: (https://mybinder.org) Docker+Conda.

I Galaxy: (https://galaxyproject.org) A web-based user interface, primarily designed for
genomics. The GUI make it hard to automate, and has too many dependencies. Very similar to
GenePattern (2008 to 2017): with +40,000 users and ∼ 4000 jobs running per week, but cut due
to funding.

I Sciunit: (https://sciunit.run) Parses program binaries to try to infer their dependencies and
copy them.

I Popper: (https://falsifiable.us), HCL (previously used by GitHub Actions) + Conda +
Docker.

I WholeTale: (https://wholetale.org) Jupyter + Conda + Docker.

I Image Processing On Line (IPOL) journal: The best example of publishing algorithms/methods
I have seen, only useful for very basic/low-level software.

Summary: except for IPOL, most solutions surveyed have far too many dependencies to be usable
beyond the immediate future.

https://mybinder.org
https://galaxyproject.org
https://sciunit.run
https://falsifiable.us
https://wholetale.org

Summary:
Maneage is introduced as a customizable template that will do the following steps/instructions (all in
simple plain text files).

I Automatically downloads the necessary software and data.

I Builds the software in a closed environment.

I Runs the software on data to generate the final research results.

I A modification in one part of the analysis will only result in re-doing that part, not the whole
project.

I Using LaTeX macros, paper’s figures, tables and numbers will be Automatically updated after a
change in analysis. Allowing the scientist to focus on the scientific interpretation.

I The whole project is under version control (Git) to allow easy reversion to a previous state. This
encourages tests/experimentation in the analysis.

I The Git commit hash of the project source, is printed in the published paper and saved on output
data products. Ensuring the integrity/reproducibility of the result.

I These slides are available at https://maneage.org/pdf/slides-intro.pdf.

For a technical description of Maneage’s implementation, as well as a checklist to customize it, and
tips on good practices, please see this page:
https://gitlab.com/maneage/project/-/blob/maneage/README-hacking.md

https://maneage.org/pdf/slides-intro.pdf
https://gitlab.com/maneage/project/-/blob/maneage/README-hacking.md

